
Faculty of Informatics, Masaryk University

} w��������
��
������������� !"#$%&'()+,-./012345<yA|

1

State Space Compression for
the DiVinE Model Checker

Bachelor’s thesis

Vladimír Štill

Brno, Spring 2013

Declaration

Thereby I declare that this thesis is my original work, which I have created
on my own. All sources and literature used in writing the thesis, as well as
any quoted material, are properly cited, including full reference to its source.

Advisor: doc. RNDr. Jiří Barnat, Ph.D.

Abstract

The main focus of this thesis is on a reduction of memory requirements of
an explicit-state LTL model-checker by use of tree compression. Presented
technique is successfully applied to model checking of real world threaded C
and C++ programs as well as some modeling formalisms dedicated for model
checking.

Keywords

Model checking, DiVinE, Implementation, Tree compression, State-space
explosion

Acknowledgements

First I would like to thank the Parallel and Distributed Systems Laboratory.
It is great place to learn new things and to work on interesting problems,
with nice people ready to help to a newcomer like me. Namely, I would like
to thank doc. RNDr. Jiří Barnat, Ph.D. for inviting me to laboratory and
advising this thesis, RNDr. Petr Ročkai for giving me insights into C++ and
DiVinE and RNDr. Jana Tůmová for supporting and motivating my journey
for knowledge.

I would also like to thank my family and my friends for supporting me
and having patience with me.

Contents

1 Introduction 1
1.1 Model checking . 2
1.2 Explicit-state model checking 2
1.3 Aims and contributions of this work 2

2 Existing state-space reduction methods 5
2.1 Partial order reduction . 5
2.2 Compact state-space representation 5

2.2.1 Automata representation 6
2.2.2 Huffman compression 6
2.2.3 Collapse and recursive indexing 6
2.2.4 Tree compression . 7
2.2.5 Hash compaction . 7

2.3 Modeling language aware methods 7
2.4 Distributed verification . 8

3 DiVinE 9
3.1 Architecture . 9

3.1.1 Generators . 10
3.1.2 Parallelization of algorithms 10
3.1.3 The interface between visitors and algorithms 11
3.1.4 Memory management 11
3.1.5 Stores . 11
3.1.6 Counterexample generation 12

4 Tree compression 13
4.1 Representation of states . 13
4.2 Requirements . 14
4.3 Design and implementation 15

4.3.1 Tree-compressed hashset 16
4.3.2 Memory management and stores 18
4.3.3 Compressed queues . 19
4.3.4 The interface between visitors and algorithms 20

ix

x CONTENTS

4.3.5 Counterexample generation 21
4.4 Integration with parallel visitors 21

5 Experiments 23
5.1 Settings . 23
5.2 Timed automata . 23
5.3 LLVM – C and C++ programs with threads 26
5.4 DVE . 27

6 Conclusion 29
6.1 Future work . 30

Chapter 1

Introduction

Explicit-state model checking1 is a well-established technique for verification
of concurrent asynchronous processes. As multithreaded programs are com-
mon nowadays, the need to test and verify concurrent processes is increasing.
Common testing methods, such as unit testing, are insufficient in this context,
since asynchronous concurrency introduces nondeterminism. This nondeter-
minism is caused by interleaving of independently scheduled processes and
makes testing inefficient: for example, unit tests may terminate successfully
even though a failing run exists (it may in fact be less likely than succeeding
runs). Explicit-state model checking can address this issue – it can verify
that no run can violate a given property (such as an assertion violation or an
LTL property).

However, model checking suffers from a problem called state-space ex-
plosion, which derives from the need to verify all runs of a system. Despite
permanently growing sizes of random access memory available in contempo-
rary 64-bit computers, the state-space explosion is still a major limitation for
explicit-state model checking.

This limitation may become even more severe when verifying unmodified
programs (in languages such as C and C++), as in the case described in
[2]. Although sophisticated reduction techniques (such as presented in [14])
can be applied to reduce the state-state explosion caused by interleaving of
multithreaded programs, state-spaces of real-world programs are still generally
large, for example due to use of dynamic memory structures, recursion stack
or due to the use of unnecessarily large integral data types.

Several state-space compression methods that could be used to handle
this problem were introduced and applied to explicit-state model checking,
for example Huffman compression, Collapse [8], and modelling-language-
independent tree compression [11].

1Introduction to explicit-state model checking and automata based approach to LTL
verification can be found in [6]. In addition, section 1.1 gives an introduction on model
checking that is necessary for this thesis.

1

2 CHAPTER 1. INTRODUCTION

1.1 Model checking

Model checking is a formal verification method that, for a given system, checks
that it satisfies a given property. Once the system and the property are stated
the verification can be performed automatically by a model-checker, that is,
a software tool for model checking.

The system can be viewed as a computer program in some programming
language, traditionally a special language is designed for the purpose of model
checking, even though model checking can also be performed on programs in
general-purpose languages such as C or C++.

The property could be a formula in a temporal logic. Commonly used
logics to describe properties are LTL, CTL and CTL*. Properties often
used in model checking include assertion safety, deadlock freedom, response
properties, etc.

1.2 Explicit-state model checking

Explicit-state model checking uses the fact that a system in any given moment
of its execution can be fully described by the memory it is using – its state.
Therefore, a run of the system can be viewed as a sequence of such states.
As verified systems are usually non-deterministic – either as a result of
asynchronous parallelism or as a feature of the programming language – all
possible runs of such systems can be naturally expressed as a graph of all
their reachable states, connected by directed transitions when one state can
change into another without any intermediate state observed. This graph is
then called the state-space graph of the system.

An explicit-state model-checker builds this graph and searches it for runs
violating the property. Like many other graph traversing algorithms, a set
of already visited states (the so-called closed set) needs to be used. As the
state-space graph can be vast, storage of this set gives the problem of the
state-space explosion – that is, memory requirements of model checking are
much higher than memory requirements of a single execution of the system.

1.3 Aims and contributions of this work

The aim of this work is to introduce a version of tree compression capable of
a substantial reduction in memory requirements of large state-spaces during
model checking. This technique is general, in the sense that it can be applied
independently of the modelling language, still resulting in good memory
savings.

At the same time, we augmented the tree compression technique with an
interface to the state-space generator, allowing optimisations based on the
specific needs of a modelling language, providing even better compression.

1.3. AIMS AND CONTRIBUTIONS OF THIS WORK 3

The proposed tree compression technique can also be applied to LTL
model checking algorithms, including parallel ones.

In this work we describe tree compression and provide implementation of
it in the context of the parallel LTL model checker DiVinE, which is being
developed in the ParaDiSe laboratory, at Faculty of Informatics Masaryk
University. At the time of writing of this thesis the implementation was
already integrated in development version of DiVinE2 and is ready to be
released with DiVinE 3.1, planned for summer 2013. The implementation
is also available in an archive of Information System of Masaryk University,
together with the text of this thesis.

Finally, this work also includes a benchmark of our tree compression tech-
nique on a wide range of models, including real-world C and C++ programs.
Tree compression allows us to perform verification with up to 42 times less
memory compared to the original, introducing virtually no time overhead.
This shows great usability of the method.

2Development version of DiVinE can be obtained from its homepage, at
https://divine.fi.muni.cz/download.html, either from the hydra build system, or from
a darcs repository.

https://divine.fi.muni.cz/download.html

4 CHAPTER 1. INTRODUCTION

Chapter 2

Existing state-space reduction
methods

As state-spaces for explicit-state model checking of asynchronous parallel
communicating processes can be vast, several methods for reducing its memory
consumption were introduced. This chapter reviews some of these methods,
their relationship to tree compression and some notable implementations.

2.1 Partial order reduction

Partial order reduction exploits the fact that many of system executions are
equivalent with respect to the verified property [1]. Using this observation, the
state-space can be reduced by omitting some states in a way which preserves
the property satisfaction.

Since the reduction achieved by partial order reduction is orthogonal to
the savings from tree compression they can be combined to provide even
better state-space reduction.

DiVinE contains an implementation of parallel partial order reduction [1].

2.2 Compact state-space representation

This section presents some techniques used to decrease the memory con-
sumption incurred by storing the state-space of a verified program in an
explicit-state model-checker, without the reduction of the number of pro-
cessed states. Most of these techniques aim to represent the closed set
compactly, sometimes the same technique can also be applied for openset
representation.

The only of the following methods implemented in DiVinE is hash com-
paction. Please note that not all methods can be directly applied to DiVinE
as some of them only provide insertion and membership test, while DiVinE
also requires that additional information can be associated with a state and

5

6 CHAPTER 2. EXISTING STATE-SPACE REDUCTION METHODS

fetched for a given state (such the information may include, for example, a
predecessor count).

2.2.1 Automata representation

As presented in [10], minimized deterministic automata can be used to
represent the entire state-space of a system. This approach treats the state-
space as a set of words over alphabet Σ, that is, S ⊆ Σ∗.

The approach presented in aforementioned paper expects fixed state sizes,
and as such, it can not be directly applied to DiVinE (which does not use
fixed-length states, e.g. in LLVM verification). For this reason, a different
encoding method would be needed.

Furthermore, algorithms implemented in DiVinE require closed-set to
behave as an associative map, which is difficult to represent by an automaton.

2.2.2 Huffman compression

This well-known generic method of compression can be applied to a state-
space, either using statically defined compression tables or in a setup with
learning runs.

This method was already implemented in DiVinE in the past [15], but
it is not supported in DiVinE 3.0. It was also implemented in the Spin
model-checker [9] with even better results [8].

Despite its expected memory savings, we decided not to implement Huff-
man compression for DiVinE as tree compression promises similar memory
saving, a superior speed and easier integration in our environment.

2.2.3 Collapse and recursive indexing

Several compression methods are described in [8] and evaluated in the context
of the Spin model-checker, most notably two versions of lossless Collapse
compression method.

The first method suggests identifying components of state vector, such
as processes and communication channels, and storing them in separate
hashtables. State itself is then represented as global data plus indices of
the separately-stored components. As stated in the aforementioned paper,
a shortcoming of this method is that an upper-bound on the largest index
for the state components must be known. Also, an implementation of this
method with a growing hashtable would pose further challenges.

Additionally, an improved version of the Collapse, called recursive
indexing, is discussed and evaluated in the same paper. This improved
version allows index sizes to vary between states by saving index sizes in the
global component of a state, which is now stored indirectly by index too.
While recursive application of this method to processes and communicating
channels is suggested in [8], it is not benchmarked there.

2.3. MODELING LANGUAGE AWARE METHODS 7

Since the Collapse technique uses knowledge of a state layout to achieve
its results, it requires an interface between state-space generator and the
storage module. This may be a complication in cases where this interface
is not present, for example when using an external module to generate the
state-space, as with DiVinE Cesmi.

2.2.4 Tree compression

Paper [11] presents recursive state compression (or tree compression) together
with its evaluation in the LTSmin model-checker [12]. This technique is
basically a modification of Collapse method in which states are partitioned
recursively. In the LTSmin implementation, the state is partitioned into slots
of fixed size. Tuples of slots are then stored in fixed size hashtable, forming
leaves of the tree, while references to those tuples are again grouped as tuples
and stored, and so on.

The method we propose in this work combines this approach with Col-
lapse’s ability to use the state layout and with the ability to use growing
hashtables, which are required in DiVinE.

2.2.5 Hash compaction

Hash compaction, presented for example in [3], is a method which sacrifices
completeness of the model checking procedure for reduced memory require-
ments. Instead of storing full states in the closed set, it stores only hashes of
visited states and, if necessary, some associated information. If implemented
carefully, it can lead to an algorithm which does not give false-negative
answers, that is, if the algorithm finds a counterexample than this counterex-
ample witnesses violation of the verified property. However, the algorithm
can miss some counterexamples as some states (those with equal hashes) will
be merged during verification.

Since hash compaction tackles the state-space explosion by omitting state
information it can be viewed as a lossy compression method, and as such it
cannot be used together with tree compression. Moreover, since successors
are generated from the open set, hash compaction cannot be used for open
set compression.

2.3 Modeling language aware methods

In some cases, better reductions can be achieved using methods which exploit
specific nature of a modeling formalism. Such a reductions are used for
example in LLVM interpreter in DiVinE and presented in [14].

Similarly to partial order reduction, those techniques usually reduce the
number of states, are therefore orthogonal to tree compression and can be
combined well with it.

8 CHAPTER 2. EXISTING STATE-SPACE REDUCTION METHODS

2.4 Distributed verification

Network-connected workstations can be used to bring more space and com-
puting power for verification of large systems. This approach was actually the
original motivation for the first version of DiVinE and is still supported in
DiVinE 3.0, even though the availability of 64-bit multicore processors, large
amounts of affordable RAM and vast computing power in a single machine
allow verification of big systems even without this extension.

As distributed memory access is much slower than local (shared) memory
access, it is necessary to apply tree compression only locally, on each work-
station separately. Communication between workstations uses uncompressed
states. Although tree compression will get less efficient in a distributed mem-
ory environment, it is still possible to combine those approaches. However,
this combination is not part of this thesis.

Chapter 3

DiVinE

The DiVinE model-checker [4] is an explicit-state model-checker designed to
utilize parallelism in both shared memory and distributed memory setting.
It supports safety and liveness LTL properties and supports multiple input
formats, including DVE, LLVM bitcode (which can be automatically created
from C or C++ source by DiVinE using the CLang compiler), UppAal
timed automata format, and CoIn. It also provides a Cesmi loader which
allows models to be represented as shared libraries, loaded by DiVinE at
runtime and used to generate the state-space – this allows easy integration of
new input formalisms, possibly by external developers.

The source code of DiVinE is freely available from a version control
repository1 and from the web page of DiVinE [5], under BSD licence.

3.1 Architecture

DiVinE is written in C++ and since version 3.0 it utilises C++11 language
features. Its architecture is modular, with modules connected together using
C++ templates, in contrast to the common approach of using inheritance and
virtual calls. This design allows tighter integration of components at compile
time, therefore, more code can be inlined which results in faster execution.

DiVinE consists of several algorithms, each represented as a separate
module, building on other modules, such as visitor modules and store modules.
Visitor modules implement several graph traversal algorithms, such as DFS,
BFS, and pseudo-BFS. Pseudo-BFS is used in parallel verification algorithms.
It does not guarantee particular order of traversal and is not deterministic.
Store modules are used by visitor modules and algorithms to represent the
closed set in graph traversal. Each store is a hashtable-like module with
support for insertion and retrieval of states and various support operations.

Since implementation of tree compression required some changes in the
architecture of DiVinE, several technical aspects of DiVinE 3.0 will now

1available at http://divine.fi.muni.cz/darcs/mainline/

9

http://divine.fi.muni.cz/darcs/mainline/

10 CHAPTER 3. DIVINE

be presented. Those aspects are necessary for understanding the changes
required by tree compression.

All the following sections are based on sources of DiVinE 3.0 if not explic-
itly stated otherwise. Sources are available in a version control repository2.

3.1.1 Generators

As input formats for DiVinE are usually programs in some formalism, it
is necessary to generate the state-space for explicit-state model checking
from them. This generation is performed on the fly by a graph generator,
starting from an initial state. With the exception of the Cesmi generator3 all
generators are input-format-specific. They provide a common interface, most
notably the functions successors and isAccepting which are responsible for
generating successors of given state and deciding whether a state is accepting,
respectively. Currently all input formats are implicit, that is, the state-space
has to be generated by those functions, and is not stored as part of the input.

Each state (that is, a vertex of the state-space graph) is represented by
an object of type Blob, which points to a flat piece of memory that can be
read from and written to, and whose size can be obtained. State memory is
separated into two parts (where the first is optional): slack and the system
state. While slack is used only by algorithms and never by the generator, the
opposite is true for the system state. Only the system state is hashed when
the state is stored, and it never changes once the state is generated.

3.1.2 Parallelization of algorithms

In DiVinE, algorithms are parallelized by using visitors which provide pseudo-
BFS traversal of graph to algorithms. Currently, two types of parallel visitors
are available: the partitioned visitor and the shared visitor.

The partitioned visitor works with a static partitioning of states among
worker threads, based on the hash of each state. Most operations are then
performed in a thread-local fashion, for example each thread has its own
hashtable. In this setting, threads communicate using IPC queues of edges
(queues transfer from state and to state of an edge). This approach can be
easily extended to multiple machines using MPI. The disadvantage of this
approach is that static partitioning may cause different loads for different
threads.

The shared visitor is a new experimental feature of DiVinE which is
under heavy development [16]. It uses a shared queue and a shared hashtable,
providing faster parallel pseudo BFS exploration. It currently cannot be
combined with MPI.

2DiVinE 3.0 repository is located at http://divine.fi.muni.cz/darcs/branch-3.0/
3The Cesmi generator is used as an interface to external generator provided by a shared

library.

http://divine.fi.muni.cz/darcs/branch-3.0/

3.1. ARCHITECTURE 11

3.1.3 The interface between visitors and algorithms

Since all algorithms implemented in DiVinE share the basic approach to graph
traversal, that is for particular state they are looking at its outgoing edges
and then (if necessary) at the states these edges lead to, this is abstracted
in an interface between a visitor and an algorithm. This interface works as
follows: the graph is traversed in an order specified by the visitor (DFS, BFS
or pseudo-BFS order) and each edge (leading from an already processed state
from to a target state to) is processed:

1. edge is processed by the function transitionHint, provided usually by
the visitor itself,

2. if the edge is not ignored, the to state is fetched from the store (if it is
already stored),

3. the edge is processed by the function transition, provided by the
algorithm,

4. if the transition is not ignored, the to state is stored in the store,
5. if the transition is to be followed, the to state is passed to the expansion

function provided by the algorithm,
6. finally, the slack of the to state is updated in a hashtable, if necessary

(used by hash compaction).
Each of the aforementioned functions is a static function of an algorithm

or a visitor and a working instance of the algorithm is passed as the first
argument to all algorithm calls.

This mechanism is implemented using C++ templates, allowing both
maximal code reuse at design time and maximal optimization at compile
time.

3.1.4 Memory management

Memory management in DiVinE 3.0 is quite straight-forward, each state
of graph is either temporary or permanent and this is tracked by a single
bit inside Blob’s header. A state is generated as temporary and it becomes
permanent once stored in the store. Permanent states are never deallocated
during a run of DiVinE and their location in memory never changes.

This memory management is simple, imposes virtually no overhead and is
sufficient for most use cases as of version 3.0. The fact that permanent states
are freed only on termination does not incur any overhead, since a single run
of DiVinE can verify only one property of one model.

3.1.5 Stores

DiVinE 3.0 supports three store types: a partitioned store, a shared store
and a hash-compacted store. The partitioned store is used by the partitioned
visitor. It has one hashtable for each thread and stores full states. The
shared store is an experimental version used by the shared visitor. It is

12 CHAPTER 3. DIVINE

optimized for shared memory, using only one hashtable which is shared across
all threads. The hash-compacted store is derived from the partitioned store
and implements hash compaction [3], a lossy compression method that stores
only hashes of states in the closed set, making memory requirements of
explicit-state model checking lower. Hash-compacted store does not support
counterexample generation and is currently only suitable for reachability
analysis.

3.1.6 Counterexample generation

Counterexamples are (in DiVinE 3.0) generated using parent pointers saved
into the slack part of a state by algorithms. When an algorithm terminates
and detects a property violation, it starts counterexample generation, passing
either accepting state (in case of reachability analysis) or state on an accepting
cycle (in case of LTL verification) to a counterexample-generating algorithm.

In the case of reachability (where counterexample is just a path to a
property-violating state), it is sufficient to track parent pointers back to the
initial state and save each state into the counterexample.

In algorithms for LTL verification, counterexamples have a lasso shape
containing a cycle going through an accepting state of the product automaton
and a path from initial state to this cycle (as implemented in DiVinE, the
path leads to an accepting state on this cycle). Those counterexamples are
generated in two phases. First, the path from the accepting state to the
initial state is traced as in the reachability case. Then, parallel BFS is run
again from the accepting state and parent pointers are updated. Finally, the
parent pointers are traced from the accepting state back to itself, generating
the cycle part of the counterexample.

Note that this approach requires parent pointers to be valid when searching
for a counterexample. This assumption holds for traditional uncompressed
stores present in DiVinE 3.0, as from states are already saved in a hashtable
(and therefore permanent) when their pointer is saved as the parent pointer
in the to state.

Chapter 4

Tree compression

With traditional hashtable approach to explicit-state model checking, full
states are saved. However, this is not necessary, as in most cases only small
part of state changes from between a state and its successors. Several methods
to take advantage of this fact were introduced, for example Collapse in
Spin model-checker [8] and tree compression with a binary tree in LTSmin
model-checker [11].

The method described in this thesis is inspired by both aforementioned
methods, while at the same time it integrates well with DiVinE and is
optimized for very large state-spaces.

4.1 Representation of states

Instead of the traditional method where states are represented as byte vectors,
tree compression represents them as a tree with parts of the state vector in
leaves. As both leaves and internal nodes of the tree are saved in a hashtable,
they can be naturally reused, leading to a memory efficient representation
of the state-space, where leaves and internal nodes of the tree can be shared
among trees of different states (or even inside state).

In our implementation, the tree representation of a state can have arbitrary
branching and different trees can store states with different sizes. The latter
is required, among others, by the LLVM interpreter used in DiVinE.

Figure 4.1 shows the layout of a single state represented as a tree. We store
roots of the tree, the internal nodes and the leaves in distinct tables, marked
as roots, forks and leaves in the figure. This allows us to unambiguously
connect each state to its corresponding root and store the state’s associated
information in the root. The associated information cannot be saved separately
from the root, as correctness of DiVinE’s algorithms relies on this information
being state-local (and information is updated during a verification run). Size
of a state is not saved in the root as that would be redundant, since all leaves
must know their size and leaves can be unambiguously identified in the tree.

13

14 CHAPTER 4. TREE COMPRESSION

roots

forks

leaves

Figure 4.1: Tree representation of state.

Figure 4.2: Subtree sharing in tree compression.

Figure 4.2 illustrates subtree sharing between states. Note that there
are no limits for subtree reusal in our tree compression, subtrees can be
reused even inside one state or across states with different sizes (therefore
tree compression is actually a somewhat misleading name, since states are in
fact represented as directed acyclic graphs).

4.2 Requirements

In DiVinE, it was a requirement that tree compression will integrate well with
most already supported features such as parallel verification, counterexample
generation or partial order reduction. Also, it is expected to work without
special settings coming from the user (with the sole exception of enabling
it). Therefore, it is important that tree compression must allow closed set to
grow, as DiVinE supports hashtables that grow during parallel verification,
in contrast to some model-checkers (such as Spin or LTSmin) who require
the user to provide an upper bound on the number of states.

When compared to the implementation of tree compression in LTSmin,
we wanted to relax its behavior by allowing trees to be not only binary but
with arbitrary branching. Furthermore, we wanted support for generators
to provide hints how to partition states well (for example cutting states on
process boundaries), whereas the abovementioned solution splits states into
fixed-size chunks.

4.3. DESIGN AND IMPLEMENTATION 15

It must also be possible to integrate tree compression with verification
using a shared, growing hashtable, which has been developed in parallel with
tree compression (more about these shared growing hashtables in DiVinE
can be found in [16]).

Finally, tree compression in DiVinE is required to work well with very large
state-spaces (that is, tens of millions of states, or even billions and more).
Such big state-spaces cannot be usually (without compression) explicitly
verified using just one single-cpu workstation since they require hundreds of
gigabytes of RAM.

4.3 Design and implementation

Because of the aforementioned requirements, tree compression was written
from scratch, not using an existing implementation of a similar technique.

The compression support itself consists of two main parts, a tree-compressed
hashset and a tree-compressed store. The tree-compressed hashset is it-
self based on an arbitrary hashset which provides the insertHinted and
getHinted operations. This design choice allowed me both to fully re-use the
current implementation of a hashset used for partitioned verification, as well
as to easily support experimental versions of the shared hashset.

Following sections summarize the implementation of tree compression in
DiVinE 3.1. As the changes leading towards tree compression support were
performed inside DiVinE’s main repository (so-called mainline1), which is
constantly changing, I created a branch capturing the state of this repository
at the time of writing of this thesis. It is included with this thesis and
available online2.

Implementation of tree compression showed some weaknesses in the cur-
rent workflow in DiVinE. Namely, memory management had to be improved
to facilitate the changes in counterexample generation. Those changes al-
lowed generation of counterexamples with both tree compression and hash
compaction. As a by-product of those changes, the system of stores was
reworked. Similarly, the integration of tree compression into the instantiation
of algorithms reached limits of the pre-existing system and therefore a new,
more flexible system of instantiation was created3.

1DiVinE mainline repository is available at http://divine.fi.muni.cz/darcs/mainline/
2DiVinE 3.1 Darcs repository with tree compression implemented as of this thesis is

available on http://paradise.fi.muni.cz/~xstill/darcs/divine31_thesis/
3Since instantiation of algorithms is largely unrelated to tree compression it will not

be described here. Curious readers will find instantiation in divine/instantiate/ di-
rectory inside mainline repository (most notably divine/instances/instantiate.h and
divine/instances/definitions.h, previous versions can be found in history of reposi-
tory).

http://divine.fi.muni.cz/darcs/mainline/
http://paradise.fi.muni.cz/~xstill/darcs/divine31_thesis/

16 CHAPTER 4. TREE COMPRESSION

4.3.1 Tree-compressed hashset

Tree-compressed hashset, represented by the class NTreeHashSet4 is the core
of tree compression. It implements the compression itself while exporting an
interface similar to that of hashsets already present in DiVinE.

The header of the NTreeHashSet declaration looks as follows:

template< template< typename , typename >
class HashSet ,

typename Item , typename Hasher >
struct NTreeHashSet ;

It is parametrized by the underlying hashset, by the type of the item being
stored and by a class providing hashing and equality tests for objects of type
Item. It should be noted that the Item type must provide several methods,
currently supported only by the Blob type. Those methods are size and
data returning size of an object in bytes and its (continuous) content as a
pointer of the type char*, respectively.

Tree-compressed hashset utilizes three hashsets (of the base type given
in the HashSet parameter). These hashsets store different parts of the tree –
roots of the tree including the slack are stored in the roots set, internal nodes
are stored in the forks set and finally, leaves of the tree are in the leaves set.
This setup allows maximal reuse of internal nodes and leaves already created
by previous inserts, while at the same time gives tighter type control (those
tables store pointer to different types, since each tree node type requires
different metainfomation).

Each state is stored as a tree identified by an instance of class Root.
Instances of this class support direct access to the slack (subsection 3.1.1) and
they can be reassembled without further support from an NTreeHashSet
instance. For internal purposes, roots also support enumeration of the
leaves of the entire tree, an operation which is currently unused outsize of
NTreeHashSet, but could be used, for example, for serialization of compressed
states over MPI.

If the system state is shorter than a given lower limit for compression
(provided by the state-space generator), it is stored entirely in roots table – in
this situation, tree compression actually incurs a slight space overhead, as it
has to store additional information in the root of the tree, as well as the state
itself in an uncompressed form. In practice, this situation will usually imply
that model itself is relatively small and can be easily verified without tree
compression, while at the same time the overhead of tree compression will not
matter (also, those models are not the primary interest in tree compression,
as mentioned earlier).

In all the other cases, a model state is partitioned and stored using all
three hashtables. States are inserted using the function insertHinted, with

4divine/toolkit/ntreehashset.h

4.3. DESIGN AND IMPLEMENTATION 17

the following prototype:

template < typename Generator >
std : : tuple< Root ∗ , bool > inse r tH in t ed (Item item ,

hash_t hash , Generator& genera to r) ;

This function requires the state itself, its hash, and a generator responsible
for the state; it returns a tuple of the (possibly new) root and a boolean flag
indicating whether the state was freshly inserted or already present. The
generator (subsection 3.1.1) provides hints on a desired partitioning of the
state. The interface between the generator and NTreeHashSet is provided by
the following functions implemented within the generator:

template< typename Yie ld >
void s p l i tH i n t (Node n , Yie ld y i e l d) ;
template< typename Yie ld >
void s p l i tH i n t (Node n , int form , int l ength ,

Yie ld y i e l d) ;

The first of these function overloads is basically a shortcut for top-level split-
ting of the entire model state, therefore we can focus on the second form. The
splitHint function uses the generator pattern, expecting its yield parameter
to be a callable object5. A range of bytes of the state n, together with a flag
indicating whether this range is to be stored as a leaf and the number of re-
maining partitions is passed to yield. All other arguments of splitHint are
quite self-explanatory. The default implementation of splitHint is provided
in divine/graph/graph.h; this implementation creates a balanced binary
tree and is generator-agnostic. Specialized versions can be implemented in a
particular generator and will be used automatically if available.

The implementation of insertHinted calls splitHint and a lambda
function is passed as the yield argument, allowing easy recursive generation
of n-ary tree, according to a shape defined by the generator. An advantage of
this approach is that the tree is created on-the-fly, without any intermediate
data structures (the overhead of recursive calls is presumably small, as C++
compilers perform massive inlining and depth of the tree should be at most
logarithmic in the size of the state in any reasonable implementation of
splitHint). Using recursion, splitHint is called until it reaches the bottom
of the desired tree shape. At this moment, a Leaf instance is allocated and
the given range is copied to it from the state. The leaf is then inserted into the
leaf set, which returns an equivalent, but permanent, leaf. This permanent
leaf is then used on a higher level of recursion, to construct a fork (forks store
pointers to permanent leaves, or to other forks), and forks are saved into the
forks table in a similar fashion. As the recursion backtracks to the root, the
entire tree is created, and finally the root is inserted. Each time an element

5In C++11 callable objects are functions, objects that implement operator (), lambda
functions and a few others, such as results of calls to std::bind.

18 CHAPTER 4. TREE COMPRESSION

is inserted to one of the tables, the original element is discarded if it was
already present in the table (if the element is not present prior to insertion, it
is equivalent to a permanent element and therefore cannot be freed). Finally,
a permanent root element is returned together with a flag indicating whether
it was already present (a state is present in NTreeHashSet if and only if a
corresponding root is present).

As an optimization, roots are stored using the hash of the entire state, not
of the binary representation of the Root object. This allows fetching roots
from the NTreeHashSet corresponding to a given state, without repeating the
aforementioned construction of the tree, which is allocation-heavy (a state
can be compared to a tree representation almost without allocation – only a
stack for tree traversal has to be allocated – but a tree is constructed from a
state with allocations at least as big as the state itself).

As already mentioned, the vertices of the tree are connected using pointers,
leading in direction from root to leaves. This approach has obvious disadvan-
tage of memory overhead incurred by 64 bit pointers (as DiVinE is usually
run in 64 bit environment). On the other hand, it allows easy integration
of tree compression with growing hashtables, as well as reconstruction of
a state from a tree without the assistance of the hashtable. Using indices
to the hashtable would require trees to be recreated each time any of the
tables is resized, slowing down resizing and complicating the design (tree
compression would have to be tightly integrate with the hashtable, whereas
in our current approach, any table with the given interface can be used).
Furthermore, leveraging the advantage of shorter indices (as compared to
pointer width) would require the trees to be parametrized by the size of the
index. Finally (as mentioned in section 4.2), we are aiming at very large
state-spaces, possibly with billions of states; this would either require indices
to be stored in variables whose size is not a power of two (which is quite
impractical) or in 64 bit variables, therefore gaining nothing on memory
efficiency.

4.3.2 Memory management and stores

As mentioned in subsection 3.1.4, memory management in DiVinE 3.0 is
quite simple. However, it makes some assumptions that no longer hold for
compressed states. In particular, it is assumed that when a from state is
processed by an algorithm in transition (item 3 in subsection 3.1.3), it
is permanent and its memory location can be saved inside to state of the
transition for later use in counterexample generation. This assumption no
longer holds for compressed states, since the state is no longer saved in one
unchanged piece, but it is still processed in this form by algorithms and
visitors (therefore states visible in algorithms are temporary). Note that this
is also the problem which caused hash compaction to be unable to provide
counterexamples in DiVinE 3.0.

4.3. DESIGN AND IMPLEMENTATION 19

To solve these issues and to allow easy integration of new types of com-
pression, two new types that wrap a state were introduced. These types
depend on the type of the store and the generator and are implemented as
nested types of the store. They have a common interface, independent of a
store type.

Vertex represents both a (possibly temporary) full state suitable for successor
generation and a permanent state saved in a hashtable. It is passed to
algorithms when processing transitions and states of model. All uses
of slack must access the stack in a permanent state. Objects of type
Vertex must be convertible to VertexId.

VertexId represents a permanent state. It contains slack, and provides
access to it. VertexIds are processed by algorithms when iterating
over an entire hashtable (used in OWCTY and MAP). Objects of the
type VertexId are generally not suitable for successor generation, but
support for their conversion to Vertex may be provided (if compression
is lossless).

Implementation of the aforementioned objects for traditional uncom-
pressed store is trivial, they are simple wrappers around the state type
provided by the generator.

For tree compression, VertexId is a wrapper around a pointer to the
root of the tree (which is stored in the roots table inside NTreeHashSet, and
provides conversion to Vertex since tree compression is lossless). Vertex
then contains both an uncompressed state as provided by the generator and
a pointer to the root of the tree.

For hash compaction, VertexId is an object which contains just the slack
and a hash of the state, while Vertex additionally keeps the state in full.
As hash compaction is lossy, conversion from VertexId to Vertex cannot be
provided for hash compaction.

Algorithms were modified so that they always access the slack saved in
the hashtable and, when they need to save an identifier of another state (for
example for predecessor tracking), they must use VertexId for this purpose.
This incurs no memory overhead as VertexId contains only a single pointer –
same as Blob, which is used to represent states in all current generators.

4.3.3 Compressed queues

Compression of the closed set as mentioned above would certainly help to
reduce memory requirements, but left alone, much space would still be wasted.

This is caused by queues which represent the open set for most algorithms.
Those queues can get quite long (the number of distinct states in them is
only bounded by the number of states, or more precisely, by width of the
state-space graph, although a state can be present multiple times in a queue).

20 CHAPTER 4. TREE COMPRESSION

Queues originally saved full states, but in presence of tree compression this is
not necessary. For IPC queues, the from state can be compressed and local
queues can be fully compressed (as they store only from states).

Queue compression is activated by store, which defines the QueueVertex
type, which is a type alias for either Vertex or VertexId. It is required that
QueueVertex can be converted to Vertex and vice versa. For tree compression
QueueVertex is defined as an alias to VertexId as it can be decompressed.
For hash compaction it must be defined as an alias to Vertex, because hash
compaction is lossy. Decompression is then performed on-the-fy in the queue.

Prior to this optimization, queues (in presence of tree compression) con-
tained full states which were not saved in stores, leading to high memory
overhead. Now queues store just VertexIds, each the size of a single pointer.

Please note that this optimization is easily applicable to BFS based
exploration strategies (which are used by all algorithms in DiVinE with the
exception of NestedDFS). Application to DFS would require successors to
be saved in the closed set before they are pushed to the stack which would
require modification of the DFS algorithm used in DiVinE.

In the case of distributed verification, it would be necessary to decompress
QueueVertex values when sending it to different machines, as the compressed
representation is only a pointer, and would be invalid when interpreted on a
different machine.

4.3.4 The interface between visitors and algorithms

Slight modification of the interface between visitors and algorithms was
required, as algorithms must be able to access VertexId for both from and
to states of a transition. The new workflow looks like this:

1. the transition is processed by the function transitionFilter, provided
by the visitor,

2. if the transition is marked to be ignored, its processing is abandoned,
3. the to state is inserted into the store, the store returns a Vertex

associated with this state and a boolean flag indicating whether the
state was already present,

4. the transition is processed by the function transition provided by the
algorithm (it gets a Vertex objects for both from and to states),

5. if the transition is to be followed, Vertex associated with the to state
is passed to the function expansion, provided by the algorithm.

The main difference is that the to state is stored before the transition
function is called. Also, only one call to the store is now necessary, as
the store procedure returns an up-to-date version of the Vertex and all
modifications of the slack are performed directly in the version stored in the
table.

4.4. INTEGRATION WITH PARALLEL VISITORS 21

4.3.5 Counterexample generation

As mentioned in subsection 3.1.6, counterexample generation in DiVinE 3.0
made some assumptions, which no longer hold for a compressed state-space.

The new approach, implemented for DiVinE 3.1, takes advantage of
VertexIds as permanent identifiers of states, as means to track parents of
states.

The algorithm has to cope with the fact that a counterexample is generated
from a sequence of full states, whereas VertexIds are just identifiers for those
states. It would be possible to use only a slightly modified version of the
original algorithm which would first reassemble VertexId to a Vertex and
than continue with full state. However, this approach would not be suitable
for hash compaction.

The new algorithm generates each trace in two phases. First, it traces
VertexIds back to the initial state (they can be traced as parent VertexId
is saved in slack, which is accessible via VertexId alone). Comparison to the
initial state must be performed in the thread responsible for given state, i.e.
the thread which stores it in its hashtable. The output of this first phase is a
sequence of VertexIds from initial state to target state. In the second phase,
a counterexample built from full states is generated using this sequence. This
can be done by starting in the initial state (which can be always generated
again) and following the path encoded in the sequence of VertexIds. Each
(possible) successor in the trace is compared to a matching VertexId and
successors leading outside the trace are ignored. Please note that comparison
to a VertexId must again happen on the thread which owns the state.

Cycle traces can be generated in a similar fashion, the main difference is
that accepting state is used in place of the initial state of the graph (this is
again preceded by parallel BFS which updates parent pointers, as in original
algorithm).

4.4 Integration with parallel visitors

As mentioned above, the standard approach to parallel verification in DiVinE
uses a partitioned setup, i.e. states are statically assigned to threads (using
their hash); this setup can be optionally extended to a network of workstation.

In this setup, tree compression can work only on a per-thread basis,
compressing each partitioned hashtable independently (access to hashtables
is not threadsafe in this setup). This means tree compression will become
less efficient as the number of threads used for verification rises.

Additional memory overhead will be incurred by IPC queues which cannot
be compressed fully, as to states are not stored yet (and they belong to
different thread and therefore cannot be saved before they are sent to queue).

This disadvantage will be eliminated in future releases of DiVinE as a
new mode of verification (based on hashtables shared by all threads on a

22 CHAPTER 4. TREE COMPRESSION

qL1 q1,1 q1,2 qL2q2,1q2,2

Figure 4.3: Partitioned visitor with tree compression.

given machine) becomes the default [16]. Experimental implementation of
the shared hashtable was already integrated with tree compression.

Figure 4.3 shows a scheme of two worker threads running, using a parti-
tioned visitor. Each thread has its own local queue and it also has an IPC
queue for each other worker, including itself. While the local queue contains
only from states, IPC queue contains entire transitions, that is both a from
and a to state. Arrows in the figure show pointers to data6, at the top – above
the dotted line – are temporary data, representing the overhead of using a par-
titioned visitor. Tree-compressed hashtables are at the bottom of the figure,
while queues are in between. qL1 and qL2 are local queues and q1,1, q1,2, q2,1
and q2,2 are IPC queues. Note that from states in an IPC queue belong to
the hashtable of their owner – for example from states in q2,1 are processed
by worker 2 but they are compressed and saved by worker 1. Therefore, it
must be possible to decompress state without access to a hashtables of other
workers (otherwise all workers would need to have access to all hashtables).

6There is actually small simplification as hashtable does not store data directly and
compressed queues points not to hashtable but to memory location of data itself, but it
can be viewed as accessible through hashtable as there exist at most one instance of each
compressed state in each worker.

Chapter 5

Experiments

5.1 Settings

Several measurements were performed comparing tree compression implemen-
tation in DiVinE to the default verification mode of DiVinE, that is without
any compression. All memory usages are peak virtual memory as reported
by DiVinE in the Memory-Used field of the -r report; this is the maximal
amount of memory addressable during a given run. Time is Wall-Time value
from the report, that is the real time of the entire run. If a test did not finish
within given limits, it is marked by a dash in the result table.

If not stated otherwise, DiVinE was executed as follows

$ divine verify <algorithm> -r --max-memory=<M> -w 1 \
[--compression=ntree] <model>

where algorithm is one of the supported algorithms (--reachability, --owcty,
--map, --nested-dfs); M is a memory bound for the run and -w 1 signifies
that DiVinE is running with one thread (to show maximal compression, more
about threading with tree compression in section 4.4).

Models for experimental evaluation came from several sources:
DiVinE distribution tarball several examples are includes in DiVinE it-

self; the LLVM and timed automata examples were used,
Beem database a large database of DVE models of different sizes [13], some

of the bigger models were used,
Modifications of above in some cases, models could be modified to create

bigger instances

5.2 Timed automata

Timed automata in the UppAal format are supported by DiVinE as described
in [7]. Jan Havlíček also kindly provided an implementation of splitHint
for timed automata, providing optimized partitioning of states.

23

24 CHAPTER 5. EXPERIMENTS

Figure 5.1 shows impact of tree compression on the model of Fischer’s
mutual exclusion protocol relative to a number of processes. Measurements
were performed on aura.fi.muni.cz with 440GB of memory, the limit was set
to 250GB.

8 9 10 11 12 13 14

102

103

104

105

106

size of instance

m
em

or
y
re
qu

ir
em

en
ts

in
M
B

Compressed
Normal

Thousands of states

size of instance 8 9 10 11 12 13 14
memory normal 268 923 4478 23352 119842 – –
[MB] compressed 185 211 321 826 2916 19420 76960
millions of states 0.12 0.55 2.5 11.1 48.8 212.9 922.2
compression ratio 69% 23% 7.2% 3.5% 2.4% – –

Figure 5.1: Memory requirements for verification of Fischer’s mutual exclusion
protocol. relative to number of processes.

Figure 5.2 shows measurements of reachability (in this case property is
deadlock freedom) on computer with 8GB of RAM, memory limit was set to
7GB. For all finished examples with the exception of boxes.xml and fixer.xml,
the property holds.

It can be seen that the impact of tree compression rises with state-space
sizes. As timed automata have large states, the impact is significant for
instances of roughly half a milion states and more; these instances can be
checked with minimal time overhead.

5.2. TIMED AUTOMATA 25

memory [MB] time [s] # of
normal ntree ratio normal ntree ratio states

boxes 160 176 110.0% 0 0 113.3% 8.9K
bridge 156 172 110.3% 0 0 74.1% 206.0
fischer 156 172 110.3% 0 0 107.3% 5.8K
fischer8 296 188 63.4% 6 6 108.3% 122.2K
fischer9 954 228 23.9% 38 38 101.4% 555.1K
fischer10 4517 410 9.1% 201 212 105.7% 2.5M
fischer11 – 1174 – – 1262 – 11.1M
fischer12 – 4163 – – 7810 – 48.8M
fischer13 – – – – – – –
fixer 164 176 107.3% 1 2 135.4% 205.7K
train-gate8 445 256 57.6% 24 27 111.6% 726.9K
train-gate9 3420 1249 36.5% 218 289 132.7% 6.5M
train-gate10 – – – – – – –

Figure 5.2: Timed automata – compression with memory limit of 7GB.

Figure 5.3 shows measurements of the MAP algorithm for LTL verification.
The MAP algorithm was used instead of OWCTY (which is asymptotically
faster) because it currently better integrates with tree compression. With
OWCTY, IPC queues are used even in a single-threaded case, in manner
which can push the whole spate space into them (as to vertices, therefore
uncompressed). Obviously, this cancels out any savings from tree compression.
OWCTY running with a shared visitor does not have this drawback.

memory [MB] time [s] # of
normal ntree ratio normal ntree ratio states

bridge 129 164 126.9% 0 0 130.2% 1.6K
fischer9 2575 344 13.4% 1001 1693 169.1% 1.7M
fischer10 3599 345 9.6% 206 349 169.8% 31K–67K
fischer11 – 1044 – – 2298 – 117.4K
fischer12 – 4005 – – 12921 – 195.9K
fischer13 – – – – – – –
fixer 3604 3150 87.4% 446 644 144.6% 214K–99K

Figure 5.3: Timed automata – LTL verification with limit of 7GB, using
MAP algorithm.

For the models bridge and fisher9, the property holds; for remaining
models, most of the memory requirements is due to counterexample generation.
The reason state-space sizes are different when compression is running can be
tracked to the implementation of the MAP algorithm – it internally orders
states of the product automaton by their location in memory, which is different
if states are compressed.

Note that in DiVinE running LTL verification, the same system state is
generated repeatedly with different state of property automaton, therefore

26 CHAPTER 5. EXPERIMENTS

compression ratio is better when verifying LTL properties, as overhead of
multiple states is reduced to overhead of multiple instances of a tree root and
the part of the state which contains the state of the property automaton.

5.3 LLVM – C and C++ programs with threads

The LLVM interpreter is used by DiVinE for verification of parallel C and
C++ programs which are translated to LLVM bitcode by CLang compiler [14,
2]. Thanks to reductions described in [14], most LLVM models in the DiVinE
distribution are too small to be considered as candidates for compression;
nevertheless, all instances were tested and the table is divided into two
parts, first shows models that cannot be verified in less than 1GB without
compression, the remaining (smaller) models are in the second part.

memory [MB] time [s] # of
normal ntree ratio normal ntree ratio states

airlines – – – – – – –
elevator 5191 772 14.9% 4238 4417 104.2% 825.2K
elevator2 75963 1792 2.4% 91575 91430 99.8% 10.5M
pt_barrier 9247 1126 12.2% 4583 5052 110.2% 1.4M
pt_rwlock 25191 1845 7.3% 19604 22811 116.4% 3.9M

anderson 218 269 123.7% 0 1 151.0% 247.0
at 414 285 68.8% 115 174 151.0% 42.0K
bakery 254 305 120.3% 2 3 133.7% 1.3K
bridge 160 205 127.8% 0 0 247.8% 226.0
collision 600 596 99.2% 97 196 203.2% 10.4K
cyclic_sched 607 427 70.2% 202 255 126.2% 48.1K
elevator_plan 170 207 121.9% 1 1 109.4% 4.8K
fifo 255 306 120.1% 2 2 111.6% 162.0
fischer 334 289 86.6% 74 121 163.0% 24.2K
global 193 243 125.6% 0 0 136.7% 44.0
lamport 824 315 38.2% 334 362 108.2% 131.1K
lamport_n1 247 299 120.8% 4 5 116.5% 2.2K
lamport_n2 215 267 123.9% 0 0 109.7% 164.0
lead-uni_b 481 433 90.0% 217 250 115.4% 10.1K
lead-uni_dkr 294 345 117.5% 2 2 116.5% 304.0
lead-uni_pt 458 452 98.6% 84 91 108.9% 6.5K
peterson 191 241 125.7% 1 1 119.7% 631.0
pt-showcase 465 517 111.0% 2 3 120.0% 1.2K
pt_cond_vars 361 412 114.2% 10 12 118.8% 5.5K
pt_mutex 203 255 125.3% 0 0 129.7% 67.0
ring 187 239 127.5% 3 3 115.9% 1.4K
szymanski 280 331 118.4% 3 4 116.2% 1.6K

Figure 5.4: LLVM compression.

5.4. DVE 27

Experiments showed that for LLVM, even models with tens of thousands
of states can benefit from tree compression and with millions of states, the
benefit is massive. Moreover, the time penalty is small. Please note that a
state-space of an LLVM model is already massively reduced, as described
in [14].

No particular limits were set for those tests, but the airlines model failed
to terminate within a day, hence it was omitted (the tests were performed on
an 8 socket server aura.fi.muni.cz with 440GB of RAM).

5.4 DVE

DVE models are models of parallel communicating finite automata; this
formalism was designed by DiVinE authors. Abundance of DVE models
can be found in Beem database. As Beem contains hundreds of models,
most of them small, only a subset was used: first, large instances of models
were chosen (instances with more than 5 workers if at least two of them were
available, otherwise two biggest), then models were verified with memory limit
of 7GB and without partial order reduction (--no-reduce option was passed
to DiVinE). Models requiring at least 1GB of memory (in uncompressed
verification) were finally benchmarked. Results can be seen in Figure 5.5.

It can be seen that for DVE, tree compression does not achieve very
good results. Overall, compression gives moderate improvement in memory
consumption but incurs significant time overhead. This is caused by fact
that DVE models have very small states. Moreover, the DVE generator is far
faster than timed automata and LLVM generators. If we analyse the worst
achieved result (for at.5) we can see that average memory requirement for
one state is roughly 93 bytes in uncompressed verification (computed as ratio
of overall memory and number of states). Of course this is an upper bound,
including overhead of all data structures used by DiVinE (such as hashtable
itself, queues and many other), the real size of state is 46 bytes in this case.
Obviously, tree compression with default leaf size of 32 bytes cannot help
much in this case and other methods such as Huffman compression would
presumably give better results.

28 CHAPTER 5. EXPERIMENTS

memory [MB] time [s] # of
normal ntree ratio normal ntree ratio states

anderson.5 5590 6847 122.5% 156 433 277.1% 51.5M
anderson.6 1484 1510 101.7% 66 197 299.5% 18.2M
anderson.7 – – – – – – –
at.5 2841 4285 150.8% 153 312 204.4% 32.0M
at.6 – – – – – – –
bakery.8 1706 1377 80.7% 86 199 232.2% 19.7M
exit.4 1506 1493 99.2% 67 139 207.5% 15.3M
firewire_tree.5 3151 834 26.5% 195 452 231.7% 3.8M
hanoi.3 1963 2920 148.7% 52 156 299.7% 14.3M
hanoi.4 – – – – – – –
iprotocol.5 3403 2489 73.1% 89 266 297.9% 31.1M
iprotocol.6 4008 2483 61.9% 139 339 244.1% 41.4M
iprotocol.7 6680 4810 72.0% 244 499 204.7% 59.8M
lamport.7 2939 3450 117.4% 122 367 299.4% 38.7M
leader_elect.5 1444 655 45.4% 44 173 391.7% 4.8M
leader_elect.6 – 5863 – – 1661 – 35.8M
leader_filt.6 1588 1359 85.5% 44 133 304.8% 16.9M
mcs.5 5535 5262 95.1% 198 614 310.3% 60.6M
phils.6 1054 935 88.7% 34 145 429.0% 6.6M
phils.7 – – – – – – –
phils.8 2457 1702 69.3% 127 430 339.3% 19.4M
plc.4 1092 825 75.6% 23503 23647 100.6% 3.8M
prod_cell.6 1970 1428 72.5% 50 163 328.0% 14.5M
sokoban.3 – 4831 – – 1215 – 72.4M
sorter.4 1674 1381 82.5% 182 227 125.0% 12.6M
szymanski.5 6449 4853 75.3% 334 1110 332.4% 79.5M
telephony.6 – – – – – – –
telephony.7 1658 1858 112.1% 137 301 220.3% 22.0M
telephony.8 – – – – – – –

Figure 5.5: DVE – compression with memory limit of 7GB.

Chapter 6

Conclusion

We proposed an improved version of tree compression, a method to mitigate
state-space explosion in an explicit-state model checking. It works by replacing
a standard hashtable with a compressed hashtable, which reuses parts of
states that are already saved.

The aim was to provide a memory efficient storage for model checking of
programs with large state-spaces, such as real-world programs in C and C++.
Those state-spaces are big in both number of states as well as in size of a
particular state, which may contain, for example, dynamically allocated data
structures. Also, such a program has variably-sized states and we support
this in our tree compression.

The proposed tree compression is generic, not bound to a particular
modeling language or state-space generator. In fact, it could be used in
different environments than model checking, as a general hashmap. At the
same time, our implementation of tree compression can be easily integrated
with specific state-space generators to further improve memory efficiency,
specifying an optimal shape of the tree representation.

Tree compression was implemented in the DiVinE model-checker and
integrated with most of its functionality (currently the only exception being
distributed MPI verification). Tree compression is being used for compression
of BFS queues as well, and for partial compression of a DFS stack.

Results of tree compression on LLVM (which is used for verification of C
and C++) programs and timed automata are very good memory saving (best
achieved compression ratio for LLVM examples is 2.4%), with minimal impact
on verification time. As a result of this efficiency, feasibility of some LLVM
examples shifted (memory-wise) from multi-socket servers or networks of
workstations to a single desktop or laptop computer. In turn, this is a starting
point for verification of instances for which the standard approach would
require several terabytes of memory. Also the additional memory overhead of
LTL verification can be efficiently reduced by tree compression.

Integration with parallel verification is supported, although it loses some

29

30 CHAPTER 6. CONCLUSION

efficiency using a partitioned setup traditional in DiVinE. This downside can
be mitigated by using of new shared memory hashtables and queues [16].

6.1 Future work

In future, we would like to combine tree compression with distributed verifi-
cation using MPI, allowing states to be compressed on each workstation to
facilitate verification of even larger state-spaces.

Memory efficiency of tree compression could be further improved by saving
some parts of a state explicitly in the root of a tree. Such parts would include
short and heavily changing fragments, such as positions in property automaton
when verifying LTL properties, or program counters in LLVM.

As the speed of verification with tree compression may become limiting
factor in some cases, we would like to work on methods to improve time
efficiency, while retaining its memory efficiency.

Finally, combination of tree compression with other compression tech-
niques such as Huffman compression is an interesting field which may further
push limits of the state-of-the art explicit-state LTL model checking.

Bibliography

[1] Jiří Barnat, Luboš Brim, and Petr Ročkai. “Parallel Partial Order
Reduction with Topological Sort Proviso”. In: Software Engineering and
Formal Methods (SEFM 2010). IEEE Computer Society Press, 2010,
pp. 222–231.

[2] Jiří Barnat, Luboš Brim, and Petr Ročkai. “Towards LTL Model Check-
ing of Unmodified Thread-Based C & C++ Programs”. In: NASA
Formal Methods Symposium. Vol. 7226. LNCS. Springer, 2012, pp. 252–
267.

[3] Jiří Barnat, Jan Havlíček, and Petr Ročkai. “Distributed LTL Model
Checking with Hash Compaction”. In: To appear in proceedings of
PASM/PDMC 2012. 2013.

[4] Jiří Barnat et al. “DiVinE 3.0 – An Explicit-State Model Checker for
Multithreaded C & C++ Programs”. In: To appear in Computer Aided
Verification (CAV 2013). 2013, p. 6.

[5] Jiří Barnat et al. DIVINE: Model Checking for Everyone. 2013. url:
http://divine.fi.muni.cz/ (visited on 05/12/2013).

[6] Edmund M. Clarke Jr., Orna Grumberg, and Doron A. Peled. Model
checking. Cambridge, MA, USA: MIT Press, 1999. isbn: 0-262-03270-8.

[7] Jan Havlíček. “Untimed LTL Model Checking of Timed Automata [on-
line]”. Master’s thesis. Masaryk University, Faculty of Informatics, 2013.
url: http://is.muni.cz/th/324943/fi_m/ (visited on 05/06/2013).

[8] Gerard J. Holzmann. “State Compression in SPIN: Recursive Indexing
And Compression Training Runs”. In: Proceedings of third international
Spin workshop. 1997.

[9] Gerard J. Holzmann. “The model checker SPIN”. In: IEEE Transactions
on Software Engineering 23 (1997), pp. 279–295.

[10] Gerard J. Holzmann and Anuj Puri. “A Minimized Automaton Rep-
resentation of Reachable States”. In: Software Tools for Technology
Transfer 2 (1999), pp. 270–278.

31

http://divine.fi.muni.cz/
http://is.muni.cz/th/324943/fi_m/

32 BIBLIOGRAPHY

[11] A. W. Laarman, J. C. van de Pol, and M. Weber. “Parallel Recursive
State Compression for Free”. In: Proceedings of the 18th International
SPIN Workshop, SPIN 2011, Snow Bird, Utah. Ed. by A. Groce and
M. Musuvathi. Vol. 6823. Lecture Notes in Computer Science. Snow
Bird, Utah: Springer Verlag, July 2011, pp. 38–56.

[12] Alfons Laarman. LTSmin. 2013. url: http://fmt.cs.utwente.nl/
tools/ltsmin/ (visited on 05/12/2013).

[13] Radek Pelánek. “BEEM: Benchmarks for explicit model checkers”. In:
In Proc. of SPIN Workshop, volume 4595 of LNCS. Springer, 2007,
pp. 263–267.

[14] Petr Ročkai, Jiří Barnat, and Luboš Brim. “Improved State Space
Reductions for LTL Model Checking of C & C++ Programs”. In: NASA
Formal Methods (NFM 2013). Vol. 7871. LNCS. Springer, 2013, pp. 1–
15.

[15] Jaroslav Šeděnka. Huffmanovo kódování stavů v DiVinE [online]. Bache-
lor’s thesis. 2007. url: http://is.muni.cz/th/143135/fi_b/ (visited
on 04/29/2013).

[16] Jiří Weiser. Dynamicky rostoucí sdílená hašovací tabulka pro DiVinE
[online]. Bachelor’s thesis. 2013. url: http://is.muni.cz/th/374154/
fi_b/ (visited on 05/06/2013).

http://fmt.cs.utwente.nl/tools/ltsmin/
http://fmt.cs.utwente.nl/tools/ltsmin/
http://is.muni.cz/th/143135/fi_b/
http://is.muni.cz/th/374154/fi_b/
http://is.muni.cz/th/374154/fi_b/

	Introduction
	Model checking
	Explicit-state model checking
	Aims and contributions of this work

	Existing state-space reduction methods
	Partial order reduction
	Compact state-space representation
	Automata representation
	Huffman compression
	Collapse and recursive indexing
	Tree compression
	Hash compaction

	Modeling language aware methods
	Distributed verification

	DiVinE
	Architecture
	Generators
	Parallelization of algorithms
	The interface between visitors and algorithms
	Memory management
	Stores
	Counterexample generation

	Tree compression
	Representation of states
	Requirements
	Design and implementation
	Tree-compressed hashset
	Memory management and stores
	Compressed queues
	The interface between visitors and algorithms
	Counterexample generation

	Integration with parallel visitors

	Experiments
	Settings
	Timed automata
	LLVM – C and C++ programs with threads
	DVE

	Conclusion
	Future work

